What is Earthquake?
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth‘s lithosphere that creates seismic waves. Earthquakes can range in size from those that are so weak that they cannot be felt to those violent enough to toss people around and destroy whole cities. The seismicity, or seismic activity, of an area is the frequency, type, and size of earthquakes experienced over a period of time. The word tremor is also used for non-earthquake seismic rumbling.
These types of hazards can occur after earthquakes:
Landslides
Earthquakes can produce slope instability leading to landslides, a major geological hazard. Landslide danger may persist while emergency personnel are attempting rescue.
Fires
Earthquakes can cause by damaging electrical power or gas lines. In the event of water mains rupturing and a loss of pressure, it may also become difficult to stop the spread of a fire once it has started. For example, more deaths in the 1906 San Francisco earthquake were caused by fire than by the earthquake itself.
Soil liquefaction
Soil liquefaction occurs when, because of the shaking, water-saturated granular material (such as sand) temporarily loses its strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, like buildings and bridges, to tilt or sink into the liquefied deposits. For example, in the 1964 Alaska earthquake, soil liquefaction caused many buildings to sink into the ground, eventually collapsing upon themselves.
Tsunamis
Tsunamis are long-wavelength, long-period sea waves produced by the sudden or abrupt movement of large volumes of water—including when an earthquake occurs at sea. In the open ocean the distance between wave crests can surpass 100 kilometers (62 mi), and the wave periods can vary from five minutes to one hour. Such tsunamis travel 600–800 kilometers per hour (373–497 miles per hour), depending on water depth. Large waves produced by an earthquake or a submarine landslide can overrun nearby coastal areas in a matter of minutes. Tsunamis can also travel thousands of kilometers across open ocean and wreak destruction on far shores hours after the earthquake that generated them.
Ordinarily, seduction earthquakes under magnitude 7.5 on the Richter magnitude scale do not cause tsunamis, although some instances of this have been recorded. Most destructive tsunamis are caused by earthquakes of magnitude 7.5 or more.
Floods
Floods may be secondary effects of earthquakes, if dams are damaged. Earthquakes may cause landslips to dam rivers, which collapse and cause floods.
The terrain below the Sarez Lake in Tajikistan is in danger of catastrophic flooding if the landslide dam formed by the earthquake, known as the Usoi Dam, were to fail during a future earthquake. Impact projections suggest the flood could affect roughly 5 million people.
Human impacts
An earthquake may cause injury and loss of life, road and bridge damage, general property damage, and collapse or destabilization (potentially leading to future collapse) of buildings. The aftermath may bring disease, lack of basic necessities, mental consequences such as panic attacks, depression to survivors, and higher insurance premiums.
Major Earthquakes
One of the most devastating earthquakes in recorded history was the 1556 Shaanxi earthquake, which occurred on 23 January 1556 in Shaanxi province, China. More than 830,000 people died. Most houses in the area were yaodongs—dwellings carved out of loesshillsides—and many victims were killed when these structures collapsed. The 1976 Tangshan earthquake, which killed between 240,000 and 655,000 people, was the deadliest of the 20th century.
The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on 22 May 1960. Its epicenter was near Cañete, Chile. The energy released was approximately twice that of the next most powerful earthquake, the Good Friday earthquake (March 27, 1964), which was centered in Prince William Sound, Alaska. The ten largest recorded earthquakes have all been megathrust earthquakes; however, of these ten, only the 2004 Indian Ocean earthquake is simultaneously one of the deadliest earthquakes in history.
Earthquakes that caused the greatest loss of life, while powerful, were deadly because of their proximity to either heavily populated areas or the ocean, where earthquakes often create tsunamis that can devastate communities thousands of kilometers away. Regions most at risk for great loss of life include those where earthquakes are relatively rare but powerful, and poor regions with lax, unenforced, or nonexistent seismic building codes.
Prediction
Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits. Many methods have been developed for predicting the time and place in which earthquakes will occur. Despite considerable research efforts by seismologists, scientifically reproducible predictions cannot yet be made to a specific day or month.
Forecasting
While forecasting is usually considered to be a type of prediction, earthquake forecasting is often differentiated from earthquake prediction. Earthquake forecasting is concerned with the probabilistic assessment of general earthquake hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades. For well-understood faults the probability that a segment may rupture during the next few decades can be estimated.
Earthquake warning systems have been developed that can provide regional notification of an earthquake in progress, but before the ground surface has begun to move, potentially allowing people within the system's range to seek shelter before the earthquake's impact is felt.
Methods of reducing earthquake hazards
Considerable work has been done in seismology to explain the characteristics of the recorded ground motions in earthquakes. Such knowledge is needed to predict ground motions in future earthquakes so that earthquake-resistant structures can be designed . Although earthquakes cause death and destruction through such secondary effects as landslides, tsunamis, fires, and fault rupture, the greatest losses—both of lives and of property—result from the collapse of man-made structures during the violent shaking of the ground. Accordingly, the most effective way to mitigate the damage of earthquakes from an engineering standpoint is to design and construct structures capable of withstanding strong ground motions.
Constructing seismic hazard maps
In many regions, seismic expectancy maps or hazard maps are now available for planning purposes. The anticipated intensity of ground shaking is represented by a number called the peak acceleration or the peak velocity.
To avoid weaknesses found in earlier earthquake hazard maps, the following general principles are usually adopted today:
-
The map should take into account not only the size but also the frequency of earthquakes.
-
The broad regionalization pattern should use historical seismicity as a database, including the following factors: major tectonic trends, acceleration attenuation curves, and intensity reports.
-
Regionalization should be defined by means of contour lines with design parameters referred to ordered numbers on neighbouring contour lines (this procedure minimizes sensitivity concerning the exact location of boundary lines between separate zones).
-
The map should be simple and not attempt to micro-zone the region.
-
The mapped contoured surface should not contain discontinuities, so that the level of hazard progresses gradually and in order across any profile drawn on the map.
The map should take into account not only the size but also the frequency of earthquakes.
The broad regionalization pattern should use historical seismicity as a database, including the following factors: major tectonic trends, acceleration attenuation curves, and intensity reports.
Regionalization should be defined by means of contour lines with design parameters referred to ordered numbers on neighbouring contour lines (this procedure minimizes sensitivity concerning the exact location of boundary lines between separate zones).
The map should be simple and not attempt to micro-zone the region.
The mapped contoured surface should not contain discontinuities, so that the level of hazard progresses gradually and in order across any profile drawn on the map.
Developing resistant structures
Developing engineered structural designs that are able to resist the forces generated by seismic waves can be achieved either by following building codes based on hazard maps or by appropriate methods of analysis. Many countries reserve theoretical structural analyses for the larger, more costly, or critical buildings to be constructed in the most seismically active regions, while simply requiring that ordinary structures conform to local building codes. Economic realities usually determine the goal, not of preventing all damage in all earthquakes but of minimizing damage in moderate, more common earthquakes and ensuring no major collapse at the strongest intensities. An essential part of what goes into engineering decisions on design and into the development and revision of earthquake-resistant design codes is therefore seismological, involving measurement of strong seismic waves, field studies of intensity and damage, and the probability of earthquake.
Source : Wikipedia & https://www.britannica.com
Comments
Post a Comment